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Hall magnetohydrodynamics has proved a useful model in several physical
phenomena, in particular, in fast magnetic reconnection. The induction equation
for this model involves the nonlinear Hall term which has been suspected to imply
loss of regularity and in particular formation of singularities of the current density.
Numerical simulations strongly suggest that this is the case, but so far a rigorous proof
was lacking. We show that for a particular axisymmetric geometry, certain integrals
of the magnetic field satisfy a differential inequality that leads to a finite-time blow-up
of the field gradient, and therefore of the current density. We may interpret this as a
breakdown of the field regularity and the formation of discontinuous solutions.

1. Introduction
Among the cascade of simplifications which start from the Boltzmann equa-

tions for multi-species plasmas and eventually end in the system of classical
magnetohydrodynamics (MHD) (Chen 1983), the system of Hall MHD remains
one of the most useful. It has been proposed to explain fast magnetic reconnection
(Shay et al. 2001; Biskamp 2000) in order to avoid the shortcomings of the single
fluid Sweet–Parker model (Sonnerup 1970; Yeh & Axford 1970). The problem of this
is that in weakly collisional plasmas where the Spitzer resistivity is small, very thin
current sheets are needed for resistive dissipation to be relevant. The thinness of the
current sheet impedes the flow through it, which slows the reconnection process. In
Hall MHD the relaxation of field lines appears to be governed by the whistler wave,
which is dispersive and does not throttle mass flow.

Let us write the system: for recent explanations of this model and its range of
validity (Pandey & Wardle 2008; Schekochihin et al. 2009), let v represent the ion
velocity, B the magnetic field, J = ∇ × B the current density, P the kinetic pressure
and di the ion skin depth. This quantity is defined as follows: let mi be the ions mass,
Z their charge, ni the number density and −e the electron charge. The ion plasma
frequency is

ωpi =

(
4πniZ

2e2

mi

)1/2

.

Then di = c/ωpi . If we normalize the system by taking the density equal to one, as
well as the speed of light, the equations of incompressible inviscid perfectly conducting
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Hall MHD are

∂v

∂t
+ v · ∇v = J × B − ∇P, (1.1)

∂B

∂t
= ∇ × (v × B) − di∇ × (J × B), (1.2)

∇ · v = 0. (1.3)

It is apparent that the right-hand side of the induction equation (1.2) presents the
second-order Hall term ∇ × (J × B), which is nonlinear on the field and does not bode
well for regularity results. Nonetheless, if we assume, for example, that v · n vanishes
at the boundary of the domain Ω under consideration, and∫

∂Ω

(J × B) · (B × n) dV = 0, (1.4)

then the total energy is conserved in time:

d

dt

∫
Ω

(v2 + B2) dV = 0. (1.5)

This also occurs for v and B periodic in a periodic box, or when we have some
combination of these conditions in different parts of ∂Ω . Hence it is pointless to look
for a blow-up of the solutions in the sense that one of them may grow indefinitely in
L2 norm in a finite time. What is possible is loss of regularity: solutions becoming
discontinuous, for example, with the formation of shocks. That would be interesting
from a mathematical viewpoint: most fluid equations possess theorems of existence
and regularity for a finite time, but the most determined efforts have failed to provide
either global theorems or examples of blow-up in a finite time. This is true not
only in the celebrated instance of the Navier–Stokes equations but also for the Euler
equations, for which less regularity should be expected (see, e.g. Deng, Hou & Yu 2006
and the references therein). Numerical studies suggest that rapid loss of smoothness
is indeed possible (Kerr 1993; Peltz 2001). For the unphysical case of infinite mass
or energy, blow-ups have been proved to exist (Li & Wang 2006; Gibbon, Moore &
Stuart 2003). As for the Hall MHD system, proof of shock formation would be
interesting not only mathematically but also physically, since this would allow the
possibility of spontaneous formation of current sheets starting from smooth initial
conditions: current sheets are the favoured configuration for magnetic reconnection
studies. In fact, numerical modelizations strongly indicate that discontinuities of the
magnetic field do indeed occur (Dreher, Ruban, & Grauer 2005). However, as in all
numerical models there remains some lingering doubt on the possibility of mistaking
a large gradient for a genuine discontinuity, a doubt enhanced by the fact that
hyperdiffusivity has been added to the model to stabilize the numerical scheme, and
hyperdiffusivity always makes for smooth solutions. We will prove rigorously that
under reasonable physical conditions, singularities of classical solutions indeed occur
in a finite time. These will be measured by the size of a certain integral of the gradient
of B.

Let us finally mention that for phenomena whose frequency lies between the ion
and electron gyrofrequencies, and length scales between the ion and electron inertial
lengths, one may consider the ions as stationary and the only flow is provided by
the flux of electrons. This is the so-called electron MHD model (Gordeev, Kingsep
& Rudakov 1994), and is the object of active research, in particular, concerning its
turbulence properties (see, e.g. Cho & Lazarian 2005; Wareing & Hollerbach 2009).
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The relevant equation in this case is (1.2), taking v = 0. Obviously, our results apply
also to this case, although a simpler argument would work in this system.

2. Setting of the problem
Since we will study axisymmetric solutions of (1.1)–(1.3), we choose an appropriate

domain and boundary conditions. Ω will be a cylinder with the radius vector r ∈ [0, R),
the height z ∈ (−h, h), and the azimuthal angle φ ∈ [0, 2π]. We will take the same
special form of solutions as in (Dreher et al. 2005): the magnetic field B will be purely
toroidal,

B = −rβ(z, r, t)eφ, (2.1)

while the velocity will be poloidal:

v = Uez + V er . (2.2)

A combination of the vorticity equation derived from (1.1) and the induction one
(1.2) yields

∂

∂t

(
∇ × v + d−1

i B
)

= ∇ ×
(
v ×

(
∇ × v + d−1

i B
))

, (2.3)

which prompts us to write this transported magnitude as

∇ × v + d−1
i B = rα(z, r, t)eφ. (2.4)

Recovering ∇ × v from (2.4), we find

∂V

∂z
− ∂U

∂r
= r

(
α + d−1

i β
)
. (2.5)

v satisfies the incompressibility condition

∂

∂r
(rV ) +

∂

∂z
(rU ) = 0. (2.6)

Since rαeφ is transported by v,

∂α

∂t
+ U

∂α

∂z
+ V

∂α

∂r
= 0. (2.7)

Finally, the induction equation may be written (Dreher et al. 2005) as

∂β

∂t
+ U

∂β

∂z
+ V

∂β

∂r
+ 2diβ

∂β

∂z
= 0. (2.8)

Equations (2.5)–(2.8) form the reduced system. Let us consider now the boundary
conditions. If we consider Ω as a domain closed by the flow, we must avoid
normal flow in the boundary: v · n = 0 at ∂Ω . In the section D = (−h, h) × [0, R], this
means

U (±h, r, t) = 0, r ∈ [0, R],

V (z, R, t) = 0, z ∈ [−h, h],

V (z, 0, t) = 0, z ∈ [−h, h]. (2.9)

The last condition follows from the axisymmetry of the flow. As for the magnetic
field, it must vanish in the upper and lower lids:

β(±h, r, t) = 0. (2.10)
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We may also consider that both lids of the cylinder are connected in a torus. In
this periodic case, we assume U , V periodic in z with period 2h, and v · n =0 at the
lateral part of the cylinder:

V (z, 0, t) = V (z, R, t) = 0, z ∈ [−h, h]. (2.11)

In this case we also need to impose that U has zero mean, which translates into∫
D

U (z, r, t)r dz dr = 0. (2.12)

As for the magnetic field, both β and βz must also be periodic in z.
Let us consider (2.7) and (2.8) first. α is constant along the streamlines of the flow

v, whereas β is constant along the streamlines of v + 2diβez, none of which leave
the domain Ω (in the periodic case we may think that the upper and lower lids
are connected). Therefore if we set initial conditions so that α and β are uniformly
bounded at the instant t = 0, the same happens for all time. We will therefore assume

‖α‖∞ + ‖β‖∞ � M, (2.13)

for all time. Since Ω has finite measure, this implies an analogous bound for all the
Lp norms of α and β .

If we consider the subspace E of the Sobolev space W 1,p(Ω), 1 <p < ∞, formed
by the solenoidal functions satisfying either the zero normal velocity or the periodic
boundary conditions described above, the mapping

E → Lp(Ω)3

v → ∇ × v

}
(2.14)

is bijective and continuous, and takes the subspace of axisymmetric functions into
itself. This is a particular case of the Helmholtz–Weyl decomposition, and it boils
down to classical theorems on the regularity of solutions of elliptic equations (see,
e.g. Simader & Sohr 1992). For instance, if we take a flux function for the velocity

U =
1

r

∂ψ

∂r
, V = −1

r

∂ψ

∂z
, (2.15)

for the zero normal velocity boundary condition we may take ψ = 0 at ∂D, and for
the periodic one ψ equal to zero at r =0 and r = R, and periodic in z. Equation (2.5)
turns out to be an elliptic equation in ψ , for which we have well known theorems
of regularity which prove our previous statement. Notice that this fails for p = ∞.
Therefore there exist constants Cp such that

‖v‖W 1,p � Cp‖∇ × v‖p (2.16)

for all functions in E. In our case, (2.5) implies that the W 1,p norm of U and V are
bounded by a constant times the Lp norm of r(α + diβ). This, together with (2.13),
implies that the partial derivatives of U and V are bounded in Lp norm by a constant
CpM = Mp .

From now on we will denote partial derivatives by subindices. We therefore have

‖Uz‖p, ‖Ur‖p, ‖Vz‖p, ‖Vr‖p � Mp (2.17)

for all time. Notice that with our assumptions, both Uβz and ββ3
z are periodic in z,

in the first case because both are zero at z = ± h.
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3. The main inequalities
Differentiating (2.8) with respect to z, we obtain (Dreher et al. 2005)

∂βz

∂t
+ Uzβz + Uβzz + Vzβr + Vβrz + 2diβ

2
z + 2diββzz = 0. (3.1)

Therefore the function γ = − β satisfies

∂γz

∂t
+ Uzγz + Uγzz + Vzγr + V γrz − 2diγ

2
z − 2diγ γzz = 0. (3.2)

Multiplying this by γ 2
z , we get

1

3

∂γ 3
z

∂t
+ Uzγ

3
z + Uγ 2

z γzz + Vzγ
2
z γr + V γ 2

z γrz − 2diγ
4
z − 2diγ γ 2

z γzz = 0. (3.3)

Let us integrate each of these terms in Ω:

1

3

∫
Ω

∂γ 3
z

∂t
dV =

1

3

d

dt

∫
Ω

γ 3
z dV. (3.4)

By Hölder’s inequality, ∣∣∣∣
∫

Ω

Uzγ
3
z dV

∣∣∣∣ � ‖Uz‖4‖γz‖3
4. (3.5)

Integration by parts yields∫
Ω

Uγ 2
z γzz dV =

1

3

∫
Ω

U (γ 3
z )z dV =

2π

3

∫ R

0

r
[
Uγ 3

z

]z=h

z=−h
dr − 1

3

∫
Ω

Uzγ
3
z dV. (3.6)

The first integral vanishes because of our hypotheses on the periodicity of U , β

and βz (which translate to γ ). The second one is identical to the one in (3.5) and may
be bounded in the same way.

Again by Hölder’s inequality,∣∣∣∣
∫

Ω

Vzγ
2
z γr dV

∣∣∣∣ � ‖Vz‖6‖γr‖3‖γz‖2
4. (3.7)

For the next term we use again integration by parts:∫
Ω

V γ 2
z γzr dV =

1

3

∫
Ω

V (γ 3
z )r dV

=
2π

3

∫ h

−h

[
rV γ 3

z

]r=R

r=0
dz − 2π

3

∫
D

(V + rVr )γ
3
z dz dr. (3.8)

The first integral vanishes because V (z, 0) = V (z, R) = 0. The second one has two
components:

2π

3

∫
D

rVrγ
3
z dz dr =

1

3

∫
Ω

Vrγ
3
z dV, (3.9)

which analogously to the integral in (3.5), may be bounded by

1

3
‖Vr‖4‖γz‖3

4. (3.10)

As for

2π

3

∫
D

V γ 3
z dz dr =

1

3

∫
Ω

1

r
V γ 3

z dV, (3.11)
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it is apparently singular at r = 0. In fact, classical results on the behaviour of V near
the axis guarantee that V/r is bounded there, but we can obtain the bound we need
by elementary means. Obviously the integral in z plays no role at all, and it is enough
to study the integral with respect to r . We have∣∣∣∣

∫ R

0

V γ 3
z dr

∣∣∣∣ �

(∫ R

0

γ 4
z r dr

)3/4 (∫ R

0

1

r
V 4 dr

)1/4

= ‖γz‖3
4

(∫ R

0

1

r
V 4 dr

)1/4

. (3.12)

Since

V (r) =

∫ r

0

s−1/4s1/4Vr (s) ds, (3.13)

we have

|V (r)| �

(∫ r

0

s−1/3 ds

)3/4 (∫ r

0

sVr (s)
4 ds

)1/4

�

(
3

2
r2/3

)3/4

‖Vr‖4 =

(
3

2

)3/4

r1/2‖Vr‖4. (3.14)

Hence(∫ R

0

1

r
V 4 dr

)1/4

� ‖Vr‖4

(∫ R

0

(
3

2

)3/4

r−1/2 dr

)1/4

= 33/821/8R1/8‖Vr‖4. (3.15)

This, together with (3.12), yields∣∣∣∣
∫

Ω

V γ 2
z γzr dV

∣∣∣∣ � C‖Vr‖4‖γz‖3
4 (3.16)

for a constant C. As for the nonlinear terms,

−2di

∫
Ω

γ 4
z dV = −2di‖γz‖4

4, (3.17)

and

−2di

∫
Ω

γ γ 2
z γzz dV = −2di

3

∫
Ω

γ
(
γ 3

z

)
z
dV

= −4πdi

3

∫ R

0

r
[
γ γ 3

z

]z=h

z=−h
dr +

2di

3

∫
Ω

γ 4
z dV. (3.18)

Again the first integral vanishes. Thus the sum of (3.17) and (3.18) yields

−2di

∫
Ω

γ 4
z + γ γ 2

z γzz dV = −4di

3
‖γz‖4

4. (3.19)

Let us recall that all the partial derivatives of U and V are bounded in L4 and L6

norm. Thus from integration of (3.3) we find that there exists another constant, again
denoted by C, such that

d

dt

∫
Ω

γ 3
z dV �

4di

3
‖γz‖4

4 − C‖γz‖3
4 − C‖γr‖3‖γz‖2

4, (3.20)

the last term proceeding from (3.7).
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There exist two possibilities. The first one is that ‖γr‖3 tends to infinity at a finite
time T∗, in whose case obviously ‖∇B‖3 undergoes a blow-up at a finite time; or
‖γr‖3 may be finite for all time (which does not mean to be uniformly bounded).
Nonetheless it is bounded in every finite interval [0, T ]. Thus there exists a constant
LT such that

d

dt

∫
Ω

γ 3
z dV �

4di

3
‖γz‖4

4 − C‖γz‖3
4 − LT ‖γz‖2

4, (3.21)

for all t ∈ [0, T ]. Since the polynomial

p(x) =
di

3
x4 − Cx3 − LT x2, (3.22)

tends to ∞ when x → ∞, it has a finite minimum −λT . Then

4di

3
x4 − Cx3 − LT x2 � dix

4 − λT , (3.23)

for all x, and therefore

d

dt

∫
Ω

γ 3
z dV � di‖γz‖4

4 − λT . (3.24)

Notice that λT does not depend on T if ‖γr‖3 is uniformly bounded. Hölder’s
inequality implies

‖γz‖4
4 � (4πhR)−1/3‖γz‖4

3. (3.25)

Hence, calling μ = di(4πhR)−1/3, we have

d

dt

∫
Ω

γ 3
z dV � μ‖γz‖4/3

3 − λT . (3.26)

Since obviously

|x(t)| =
∣∣∣∣
∫

Ω

γ 3
z dV

∣∣∣∣ � ‖γz‖3
3, (3.27)

we obtain

x ′(t) � μ|x(t)|4/3 − λT , (3.28)

for all t ∈ [0, T ]. Hence, if x(0) > 0, μx(0)4/3 > λT , x is always increasing and in
particular always positive. In this case, x(t) → ∞ when t → T∗, where

T∗ =

∫ ∞

x(0)

dx

μx4/3 − λT

< ∞, (3.29)

provided T∗ � T . Notice that since the integral of this function is finite, this happens
sooner or later if λT is uniformly bounded for all T . If this does not occur, nevertheless
blow-up occurs for large enough x(0) to have∫ ∞

x(0)

dx

μx4/3 − λT

� T . (3.30)

Again the existence of such x(0) is guaranteed. Therefore we can always choose
smooth initial conditions such that the function x and a fortiori ‖γz‖3 tends to
infinity, unless ‖γr‖3 tends to infinity first. Anyway a finite time blow-up of ‖∇B‖3 is
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guaranteed for particular smooth initial conditions; if ‖Br‖3 is bounded in time, for
all initial conditions larger than a fixed constant. Notice that since in our case ‖∇B‖3

and ‖J‖3 are equivalent norms, what we find is a blow-up of the current density in
the L3 norm.

4. Conclusions
There is considerable numerical evidence of the formation of shocks of the magnetic

field in Hall MHD, but a rigorous proof of their existence was lacking. If we interpret
this singularity formation as a blow-up of the gradient of the magnetic field in L3

integral norm, we may choose a certain configuration of the velocity and the magnetic
field in an incompressible plasma that will certainly lead to this blow-up. Specifically,
in this geometry all the magnitudes are axisymmetric, the velocity is assumed poloidal
and the magnetic field toroidal. In this case, if we assume that the magnetic field and
the vorticity are uniformly bounded at the initial instant, the same thing happens for
all time. By contrast, the vertical derivative of the magnetic field satisfies a nonlinear
evolution equation which may be integrated in the domain for appropriate boundary
conditions. The new scalar differential inequality guarantees a finite time blow-up for
large enough initial conditions. This means that ‖∇B‖3 (or equivalently ‖J‖3) tends
to blow up at a finite time. This particular geometry of the flow and the magnetic
field is chosen to enhance the effect of the Hall term, that is, the transport of
magnetic field by the electron flow, but it is likely that blow-ups occur for many other
topologies.
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